相対論 (1) - 定数、換算式 -

定数

constant

value

unit

u

931.4941

(MeV)

c

2.99792458e8

(m/s)

e

1.60217663e-19

換算式

全エネルギー

E &= m c^2 \\
  &= \gamma m_0c^2 \\
  &= \frac{m_0c^2}{\sqrt{1 - \beta^2}} \\

E &= E_0 + E_k \\
  &= m_0 c^2 + E_k

E = \sqrt{p^2 c^2 + m_0^2 c^4}

運動エネルギー

E_k &= m_0c^2 (\gamma - 1) \\
    &= m_0c^2 \left( \frac{1}{\sqrt{1 - \beta^2}} - 1 \right)

E_k &= E - E_0 \\
    &= E - m_0 c^2

運動量

p = m_0c \gamma \beta

p = \frac{m_0c \beta}{\sqrt{1 - \beta^2}}

p = m_0c \sqrt{\gamma^2 - 1}

pc = E \beta

pc = \sqrt{E^2 - m_0^2 c^4}

pc = \sqrt{K^2 + 2Km_0c^2}

β、γの算出

\beta = \frac{\sqrt{K^2 + 2Km_0c^2}}{K + m_0c^2}
      = \frac{\sqrt{\left( \frac{K}{m_0c^2} \right)^2 + 2 \frac{K}{m_0c^2}}}{\frac{K}{m_0c^2} + 1}

\beta = \sqrt{1 - \left( \frac{m_0c^2}{E} \right)^2 }

\beta = \sqrt{1 - \frac{1}{\gamma^2}} = \frac{\sqrt{\gamma^2 - 1}}{\gamma}

\beta = \frac{\gamma\beta}{\sqrt{1 + (\gamma\beta)^2}}

\gamma = \frac{K}{m_0c^2} + 1

\gamma = \frac{E}{m_0c^2}

\gamma = \sqrt{1 + (\gamma\beta)^2}

\gamma\beta = \sqrt{\gamma^2 - 1}

\gamma\beta = \frac{\beta}{\sqrt{1 - \beta^2}}

参考文献