=============================== 相対論 (1) - 定数、換算式 - =============================== 定数 ================== .. csv-table:: :header: "constant", "value", "unit" :widths: 10, 10, 10 "u", "931.4941", "(MeV)" "c", "2.99792458e8", "(m/s)" "e", "1.60217663e-19", "(C)" 換算式 ========================= 全エネルギー ---------------------- .. math:: E &= m c^2 \\ &= \gamma m_0c^2 \\ &= \frac{m_0c^2}{\sqrt{1 - \beta^2}} \\ .. math:: E &= E_0 + E_k \\ &= m_0 c^2 + E_k .. math:: E = \sqrt{p^2 c^2 + m_0^2 c^4} 運動エネルギー ---------------------- .. math:: E_k &= m_0c^2 (\gamma - 1) \\ &= m_0c^2 \left( \frac{1}{\sqrt{1 - \beta^2}} - 1 \right) .. math:: E_k &= E - E_0 \\ &= E - m_0 c^2 運動量 --------------- .. math:: p = m_0c \gamma \beta .. math:: p = \frac{m_0c \beta}{\sqrt{1 - \beta^2}} .. math:: p = m_0c \sqrt{\gamma^2 - 1} .. math:: pc = E \beta .. math:: pc = \sqrt{E^2 - m_0^2 c^4} .. math:: pc = \sqrt{K^2 + 2Km_0c^2} β、γの算出 --------------- .. math:: \beta = \frac{\sqrt{K^2 + 2Km_0c^2}}{K + m_0c^2} = \frac{\sqrt{\left( \frac{K}{m_0c^2} \right)^2 + 2 \frac{K}{m_0c^2}}}{\frac{K}{m_0c^2} + 1} .. math:: \beta = \sqrt{1 - \left( \frac{m_0c^2}{E} \right)^2 } .. math:: \beta = \sqrt{1 - \frac{1}{\gamma^2}} = \frac{\sqrt{\gamma^2 - 1}}{\gamma} .. math:: \beta = \frac{\gamma\beta}{\sqrt{1 + (\gamma\beta)^2}} .. math:: \gamma = \frac{K}{m_0c^2} + 1 .. math:: \gamma = \frac{E}{m_0c^2} .. math:: \gamma = \sqrt{1 + (\gamma\beta)^2} .. math:: \gamma\beta = \sqrt{\gamma^2 - 1} .. math:: \gamma\beta = \frac{\beta}{\sqrt{1 - \beta^2}} 参考文献 ============================== * Physics Memo : Koba-wiki ( https://www.rcnp.osaka-u.ac.jp/~kobayash/be_koba/cgi-bin/moin.cgi/Physics%20Memo.html )