############################################################## Section: "simulation" について ############################################################## ============================================================ 各種パラメータ ============================================================ 各種パラメータ .. csv-table:: **Simulation Sectionのパラメータ** :header: "keyword", "Description", "Default (Recommended)" :widths: 30, 30, 70 :width: 800px "Max Output Level", "出力メッセージのレベル: e.g.) 1, 3, 5", "(3)" ============================================================ Steady State Max Iterations (定常解最大反復回数) について ============================================================ * Steady State Max Iterations は、各ソルバを連成して解く際の最大反復回数. * 非線形マルチフィジックス問題を解く場合は、以下の反復を実施することになる. 1. ある非線形偏微分方程式"A" を線形化して解く. 2. (i) 線形化方程式を解き、(ii) パラメータを更新する.(i)(ii)を解が収束するまで反復し、非線形偏微分方程式"A" を解く. 3. 物理モデル中のすべての非線形偏微分方程式に対して、上記を繰り返し、マルチフィジックス問題を解く. | * Stedy State Max Iterations は、上記 3. の最大反復回数を指定するパラメータである. * 熱-流体連成方程式であれば、 熱方程式とNavier-Stokes方程式を最大で何回反復してもよいか、を示す. | ========================================================= Timestepping Method ( 時間積分法) について ========================================================= * **無条件時間安定** な時間積分法、かつ、 **高精度( 2nd-Order or more )** な手法がおすすめ( **BDF(k=2)** , Clank-Nicolson 法 etc. ) .. csv-table:: **Timestepping Methodの指定** :header: "keyword", "Description" :widths: 30, 70 :width: 800px "**BDF**", "**BDF (Backward Differentiation Formula: 後退差分式 )** を用いる陰解法の一種. 過去の時間情報を次数に応じて加味し、規定の係数に従って総和をとる. 一般化Runge-Kutta法のようなイメージ. **無条件安定な時間積分法** . 散逸が大きいので、保存性が必要となる解析対象(音響波動や導波管など)には向かない." "Newmark", "Newmark Beta Method と呼ばれる一般化された陰解法の数値積分法を指定する.無条件安定時間積分法であるため, 大きな時間増分ステップで動的解析を実行できるらしい. **Newmark Beta** の別途指定が必要. Newmark Beta = 0.0, 0.5, 1.0 を指定する際、それぞれ、Explicit Euler, Crank-Nicolson, Implicit Euler に相当する. Newmark Beta無しに、Timestepping Methodとして、3つのうちのいずれかを指定しても良い." "Explicit Euler", "陽的オイラー法.基本的な陽解法の一種.条件付き安定解法で時間ステップを十分短くする必要がある.不安定による数値振動が発生する可能性がある. Newmark Beta=0.0のケースと同値." "Implicit Euler", "陰的オイラー法.基本的な陰解法の一種.1次精度であり、精度が低く、数値分散が大きく、系のエネルギーを長期間保存したい系とは相性が悪い.Newmark Beta=1.0のケースと同値." "Crank-Nicolson", "陽的オイラー法と陰的オイラー法の中間的な陰解法の一種(陰解法として未来の情報を用いる部分が0.5分だけあるため). 無条件安定解法であり、時間ステップを好きにとって計算することができる.Newmark Beta=0.5のケースと同値."